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Abstract
The perpendicular electron transport through a ferromagnetic bilayer (F1/F2)
in contact with a superconductor (S) was investigated theoretically. The
conductance is calculated in the Kubo formalism with Green functions
found as the solutions of the Gorkov equations. It is shown that the giant
magnetoresistance (GMR) defined as the relative difference in conductivity
between the parallel and antiparallel alignments of the magnetizations in F1

and F2 behaves differently in the ballistic and diffusive regimes. In the former
case, the GMR amplitude can be fairly large, whereas in the latter case, it
almost vanishes. The interpretation of this behaviour is given by comparing
the contributions to the total resistance of the Andreev reflection at the F1/S
interface and the usual quantum reflection at the F1/F2 interface.

1. Introduction

The problem of spin-dependent electron transport in nanoheterostructures has attracted a lot of
attention during the last decade. In heterostructures consisting of successive ferromagnetic thin
layers separated by paramagnetic layers, the so-called giant magnetoresistance (GMR) was
discovered [1]. Another type, for which the spin polarization of the current affects the measured
resistance, are the hybrid heterostructures: ferromagnetic metal/superconductor (F/S) bilayers
or multilayers. The theoretical descriptions of the spin-polarized electron transport for the two
types of heterostructure have common features. Namely, it is considered that the characteristics
of the current carriers in a ferromagnetic metal are different for different spin directions. So
for ballistic transport one has to take into account the spin asymmetry of the electron band
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structure (e.g. exchange splitting), whereas for diffusive transport the most important factor
is the spin dependence of the elastic mean free paths of electrons. In GMR structures, when
the magnetizations of the successive ferromagnetic layers are antiparallel (AP), an electron
with definite spin (no spin-flip processes) moves successively through layers of high and
low conductivities, suffering reflections at the interfaces. In contrast, in the case of parallel
magnetizations (P), electrons with favourable spin for high conductivity move freely through
the structure leading to a ‘short circuit’ (see the review [2]).

The situation for F/S structures is similar to the case of antiparallel orientation of
magnetizations in GMR structures. In F/S structures one has to take into account Andreev
reflection [3] (A.R.), when electrons with definite spin reflect at an F/S interface as holes
with opposite spin, leaving the current-driving Cooper pair in the superconductor. For ballistic
transport, only the fraction of electrons in the majority-spin subband are concerned in the A.R.,
and the remaining fraction are reflected at the F/S interface like at a usual potential barrier,
so these electrons cannot contribute to the current. For diffuse transport the current in the
ferromagnet is carried by electron–hole pairs with different spins, created in the process of
A.R. As a result the resistivity of the F/S structure is for both regimes higher than that of the
single F layer. The theory of ballistic transport for F/S structure was developed in [4] and in
more detail in [5] where a list of references can be found. The case of diffuse transport in F/S
structures was considered in [6, 7].

Now the question arises of whether the electron transport in the F/S structure is determined
by processes similar to those in GMR structures with antiparallel orientation of magnetizations
in the adjacent ferromagnetic layers: does the resistivity of the hybrid GMR structure in
contact with a superconductor depend on the orientation of the magnetization or does it reach
its maximum value due to the presence of superconductivity suppressing the GMR? This
problem was approached in [8, 9]. In [8] the motion of electrons through the spin-valve
structure consisting of two ferromagnetic layers (or domains) with parallel and antiparallel
directions of magnetizations in contact with a superconductor was described by the diffusion
equations with different diffusion constants for up- and down-spin electrons. It was shown
that due to the A.R. the resistivities of one- and two-domain structures are equal and so the
GMR is completely suppressed. The authors considered that GMR would be restored if one
took into account spin-flip processes. A different model was used in [9]. The multilayered
structure [F/N]nS, where F(Co) is the ferromagnetic layer, N(Cu) is the paramagnetic metal
layer, S is the superconductor, was described in terms of an spd tight-binding Hamiltonian
with parameters fitted for an ab initio band calculation. In the case considered in [9], the
conductance of the system was calculated through the Landauer formula generalized in [10]
for the case of A.R. from the superconductor. The results of the numerical calculation of the
conductance of the system for the P and AP cases for a given set of the parameters (only the
thickness of the P(Cu) layer or the number n of periods was a variable parameter) have shown
that the GMR value is zero within the accuracy of the computation. These results seem to be
rather puzzling, since in experiments [11, 12] superconducting contacts were most often used
to measure the CPP-GMR (CPP standing for current perpendicular to the plane). In all of these
experiments rather high values of the GMR for [F/N]n multilayers was found. To resolve this
contradiction, the authors of [13] have calculated the dependence of the GMR on the strength
of the spin–orbit interaction in the F layers for a model similar to the one used in [9]. The
numerical simulation has shown that with increasing spin–orbit interaction ξ , which mixes the
up- and down-spin channels, the value of the GMR increases also up to a value of ∼100% at
ξ ≈ 0.08 eV. For larger ξ , it decreases, vanishing at ξ ≈ 0.17 eV. It is interesting to note that for
values of ξ � 0.08 eV, the GMR for the system in contact with a superconductor in the normal
state coincides with that for one in contact with a superconductor in the superconducting state.
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Of course, the suggested mechanism for restoring the GMR due to spin–orbit interaction
has to be taken into account for thicknesses of F layers comparable to the spin-diffusion length
(SDL—this length is determined at low temperatures by the spin–orbit contribution to the
scattering potential). Detailed analyses [14] of the experimental data on CPP-GMR for a lot
of multilayers of different types have shown that for layer thicknesses much smaller than the
SDL, the values of the observed GMR are fairly large despite the fact that Nb superconducting
contacts were used. (We recall that in [13] it was predicted that the GMR would tend to zero
if spin-mixing processes were non-effective.) One more important conclusion of [14] was
that the GMR cannot be explained by just extrinsic effects (scattering by imperfections); it
is necessary to also take into account intrinsic effects, coming from electron reflections at
perfect interfaces. The latter effects are more pronounced in the case of ballistic transport.
The ballistic regime of transport in a GMR sandwich in contact with a superconductor was
investigated in [15]. It was shown that the GMR oscillates as a function of the ferromagnetic
layer thickness around a non-zero average value, crossing the zero value at several points,
so in general the GMR is not suppressed in the ballistic regime. Simultaneously, in [15] the
conclusion of the paper [8], that the GMR is zero for a diffuse regime, was rederived.

In this paper we present the results of an investigation of the GMR for one- and
two-domain ferromagnetic layers in contact with a superconductor, taking into account the
spin-dependent bulk scattering of electrons, the barrier between domains and A.R. at the
ferromagnetic/superconductor interface.

2. Model

We consider a spin-valve sandwich of the type F/F/S, where the Fs are ferromagnetic layers
(domains) with thicknesses a and b, the magnetizations of which can be oriented parallel or
antiparallel to each other, and S is a superconducting layer. A simple two-band (spin-up and
spin-down) free-electron model is adopted for this calculation. So the Hamiltonian of the
system is written as

H = HF + HS (1a)

HF =
∑

σ=+(↓),−(↑)

∫
r∈F

[(
p̂2

2m
− εF + sgn(σ )εex

)

× ψ s∗
σ (r)ψ

s
σ (r) + γsd(r)

(
ψ s∗
σ (r)ψ

d
σ (r) + h.c.

)]
d3r (1b)

HS =
∫
r∈S

[∑
σ

(
p̂2

2m
− εF

)
ψ s∗
σ (r)ψ

s
σ (r) +

(
�(r)ψ s∗

↑ (r)ψ
s∗
↓ (r) + h.c.

)]
d3r (1c)

where σ is the electron spin index,

εex = k
↑2
F − k↓2

F

2m
is the exchange energy, εF , kσF are Fermi energy and momentum respectively. The second
term in (1b) describes the scattering of quasi-free s electrons into almost localized d states.
In bulk ferromagnetic metals d states may make a contribution to the current [16], but as we
consider that there are no d states in the superconductor, d electrons are completely reflected
at F/S interfaces and will not make any contribution to the current. However, s–d scattering
in ferromagnetic dirty d-metal alloys remains the most important mechanism of s-electron
scattering for the case under consideration. Further, we will consider the random s–d scattering
potential γsd to be much smaller than εF and we will calculate the mean free path in the Born
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approximation. � is the order parameter of the superconductor. Now it is easy to write down
the system of Gorkov equations for the normal (G) and anomalous (F ) Green functions:[
h̄2

2m

(
∂2

∂z2
− �2

)
+ εF + εex − γ 2

sdG↑↑dd (z, z)

]
G↑↑ss (z, z

′) + �F ↑↓ss (z, z
′) = δ(z− z′) (2a)

�∗G↑↓ss (z, z
′)−

[
h̄2

2m

(
∂2

∂z2
− �2

)
+ εF − εex + γ 2

sdG↓↓dd (z, z)

]
F ↑↓ss (z, z

′) = 0. (2b)

The system of equations (2) is written in the (�, z) representation, where � is the electron
momentum projection on the XY -plane and z is the axis perpendicular to the plane of the
layer. We consider that the system is infinite and homogeneous in the XY -plane. The terms
εex and γ 2G↑↑dd are different from zero and � = 0 if z belongs to the F layer, and vice versa in
S layers. The system (2) is written for the layer with its magnetization parallel to the ↑-spin.
For the layer with the opposite direction of magnetization, εex has to be changed to −εex and
G↓↓ (↑↑)dd to G↑↑ (↓↓)dd . The main difference of system (2) from that usually employed for F/S
structures (see, for example, [17]) is that we took into account s–d scattering. Otherwise the
term γ 2

sdGdd in (2) has to be replaced by γ 2
ssGss and the additional term γ 2

ssFss will appear. In
this case the system of equations (2) becomes non-linear and so too complicated. In our case
the function Gσσ

dd (z, z) may be considered as a constant along the z-direction if it is averaged
over wavelength oscillations, and the system of equations (2) may then be solved analytically.
The explicit expressions for the Green function are given in appendix A.

The current jσ for each direction of electron spin may be written as

jσ =
∫

[Gσσ (z, z′)Eσ
eff(z

′) + Gσ,−σ (z, z′)E−σeff (z
′)] dz′ (3)

where the conductances Gσσ ′ are given by the generalized Fisher–Lee formula [18]:

Gσσ ′(z, z′) = 4e2

πh̄

(
h̄2

2m

)2 ∑
�

Aσσ ′
� (z, z′)

↔
∇z
↔
∇z′Aσ ′σ

� (z′, z) (4)

where
↔
∇z = (1/2)(

→
∇z −

←
∇z)

is the antisymmetric gradient operator and

Aσσ ′
� = (i/2)(Gσσ ′

� − Gσ ′σ
� ).

Here Gσσ
� is the conventional Green function and Gσ,−σ

� = Fσ,−σ
� is the anomalous Green

function different from zero only in the presence of Cooper pairs (superconductor). Eσ (z′)
is the effective electrical field acting on the carrier (electron or hole). Here it is important to
notice that the expression (3) for the conductance is written in the ‘bubble’ approximation,
and following the procedure suggested in [19], the vertex corrections are taken into account by
introducing effective spin-dependent electrical fields Eσ (z) ≡ ∂µσ (z)/∂z, where µσ (z) is the
electrochemical potential. These fields have to be found from the condition of non-divergency
of each spin-channel current (we consider the case of no spin mixing):

∂jσ (z)

∂z
= 0. (5)

Later we will show that to fulfil conditions (5) the effective fieldsEσ (z) have to be different
for different spin directions and in each layer (Eσ (z) is a step-like function), and also that due to
the charge and spin accumulation, a finite spin-dependent voltage drop occurs at each interface
(F/F and F/S).
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3. Ballistic regime

If the thicknesses of all layers are much smaller than the electron mean free paths, one can
neglect the electron scattering. If one substitutes into equation (4) the expressions for the
Green functions (see appendix A) in the limit of γsd → 0, the conductance does not depend on
the coordinates z and z′. In this ballistic limit the condition of non-divergency of the current
is fulfilled automatically and the expressions for the conductances of the system for parallel
(GP ) and antiparallel (GAP ) orientation of the magnetizations can be written in the following
forms:

GP = 4e2

πh̄

∑
�

(1− R2) (6a)

GAP = 4e2

πh̄

∑
�

(1− R2)(1− r2)

Den
(6b)

Den = 1 + 2r2R2 + r4 − 2Rr(cos 2c↑a − cos 2c↓a)(1 + r2)

− 2r2
[
R2 cos 2(c↑ + c↓)a − cos 2(c↑ − c↓)a] (6c)

where

r = c↑ − c↓
c↑ − c↓

represents the effective spin polarization,

R = c↑c↓ − c2
2

c↑c↓ + c2
2

c↑ (↓) =
√
(k
↑ (↓)
F )2 − �2 c2 =

√
(kSF )

2 − �2.

Also, a is the thickness of the intermediate ferromagnetic layer, kSF is the Fermi wave vector in
the superconducting layer. The upper limit of the sum over � is equal to the minimum value of
k
↑ (↓)
F or kSF . The expression (6a) for GP coincides in the appropriate limit with the expression

for the conductance of the single ferromagnetic layer in contact with a superconductor obtained,
for example, in [5]. It is important to notice that if k↑F , k↓F and kSF do not coincide and so
in general R2 �= 0, the conductance of the system decreases compared to the case of the
absence of superconducting contact. The expression (6b) contains in the numerator two
factors: (1 − R2) and (1 − r2). The first one is specific to Andreev reflection and the
second one describes the usual reflection of polarized electrons at the F/F interface. So if
only these two factors are taken into account, considering the denominator equal to unity,
the conductance of the AP configuration is smaller than the one for the P configuration, and
the GMR survives. Let us consider then the effect of the denominator in expression (6b). It
describes the multiple reflections of an electron which moves inside the ferromagnetic layer
adjacent to the superconductor, as in a Fabry–Perot interferometer. These multiple reflections
are responsible for the formation of quantum well states within the layer. As a result, the
conductance GAP is an oscillatory function of the arguments k↑ (↓)F a, (k↑F ± k↓F )a, but it never
diverges or becomes negative. A similar behaviour of the conductance was predicted in [4], for
a structure composed of a ferromagnetic layer sandwiched between a superconducting contact
on one side and a thin oxide barrier on the other side.

Now we come to the question of whether GP is always larger than GAP or whether,
for some values of the parameters, GAP can be equal to or even larger than GP . For very
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small polarization r � 1, from expressions (6) it is easy to obtain the following approximate
expression for the GMR:

GMR = σP − σAP
σAP

= 2
∑
�

r2R2 = 2
∑
�

(
c↑ − c↓
c↑ + c↓

)2(
c↑c↓ − c2

2

c↑c↓ + c2
2

)2

. (7)

This expression is definitely positive. Without any superconducting contact, the GMR would
be given by

GMR = 2
∑
�

r2.

It is interesting to note that expression (7) coincides with the expression for the MR in a spin-
valve tunnel junction [20], after substitution for c2 of the modulus of the imaginary electron
momentum inside the barrier. The physics is similar for the two phenomena: in both cases the
electrons undergo reflections at the interface: F/I (I: insulator) or F/S. These spin-dependent
reflections change the spin-dependent density of states in the ferromagnet near the interface
and, correspondingly, change the polarization of the current.

For larger r , the conductancesGP andGAP are plotted in figure 1 versus the square of the
effective polarization r2. The following parameters were used: k↑F = 1 Å−1, kSF = 1.3 Å−1 and
a = 5c0 (c0 = 4.06 Å is the lattice parameter of Co for hcp structure). a = 5c0 corresponds to
ten atomic monolayers. k↓F was varied from 1 to 0, so correspondingly r2 was changing from
0 to 1. As can be seen in figure 1, the conductances for both magnetic configurations decrease
as r2 increases. GAP exhibits also some weak oscillations as a function of r2, but it remains
smaller than GP for almost the whole range of r2.
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Figure 1. The dependences of the conductivities for the parallel and antiparallel configurations as
functions of the effective spin polarization r2. The parameters are k↑F = 1 Å−1, kSF = 1.3 Å−1,
a = 20.3 Å, l↑ = l↓ = 10 000 Å (quasi-ballistic regime).

In figure 2, the GMR is plotted versus the thickness a for a given value of r2 = 0.16.
Figure 2 shows that the GMR = (GP −GAP )/GAP oscillates around a non-zero positive
value and for the ballistic regime tends to the asymptotic limit 40% for a > 100 Å. Of
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Figure 2. The GMR for the ballistic and diffusive regimes as functions of the thickness of the
ferromagnetic layers (a = b). The parameters are k↑F = 1 Å−1, k↓F = 0.429 Å−1, kSF = 1.3 Å−1.
For the ballistic regime: l↑ = l↓ = 10 000 Å; for the diffuse regime: l↑ = 120 Å, l↓ = 40 Å.

course, the thickness of the layer can change only in steps equal to the lattice parameter
c0/2. It is interesting to note that the situation is similar to the case of a spin-valve tunnel
junction with a paramagnetic metal layer inserted between one ferromagnetic electrode and
an insulating barrier [21–23]. In this case, it was shown that the paramagnetic layer (for
instance Cu inserted between Co and Al2O3) can constitute a spin-dependent quantum well.
Oscillations in the tunnel magnetoresistance (TMR) were predicted for such a system as a
function of the paramagnetic layer thickness with a period given by the Fermi wavelength in
this layer. However, a crucial difference between this case and the present one is that here, the
GMR oscillates around a finite positive value, whereas in a tunnel junction, the TMR oscillates
around zero. Consequently, for tunnel junctions, averaging over a distribution of paramagnetic
layer thickness caused by roughness and/or increasing the paramagnetic layer thickness leads
to a strong decay in the TMR amplitude. In contrast, in the present case, averaging over a
distribution of thickness and/or increasing the thickness of the ferromagnetic layers leads to a
non-zero GMR amplitude which depends on the values of r2 and R2.

In figure 3 the dependence of the GMR on the effective spin polarization r2 is plotted for
the thickness a equal to ten monolayers of Co. We have also calculated the a-dependence of
the conductivity for other values of r2. These dependences are similar to the one shown in
figure 2. The resonances of GAP exhibit rather sharp peaks at a = 2πn/k↓F if 1 − r2 � 1,
i.e. k↓F → 0. In this case, the system becomes a real Fabry–Perot interferometer for electrons.

4. Diffuse regime

Now we suppose that it is possible to neglect exchange splitting of the s-type-carrier (electrons
and holes) bands, but their up and down mean free paths in the ferromagnet are different due
to s–d scattering. The detailed theory of the GMR for this model was presented in [24] and is
often used for the interpretation of CPP-GMR experiments. In this case the formal expressions
for the currents jP (AP )

↑ for P and AP configurations through the system, for example, may be
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Figure 3. The GMR as a function of the square of the effective spin polarization r2 for the ballistic
and diffuse regimes for a = b = 20.3 Å. The parameters are k↑F = 1 Å−1, kSF = 1.3 Å−1. For the
ballistic regime: l↑ = l↓ = 10 000 Å; for the diffuse regime: l↑ = 120 Å, l↓ = 40 Å.

written as

j
↑AP
1 = E

↑
1

∫
1

d1
� d� +

1

2

∫ [
E
↑
1

d1
− E

↑
2

d2
(1 + e−2d2a)

+
E
↓
2

d1
e−2d2a(1− e−2d1a) +

E
↓
1

d2
e−2(d1+d2)a + �v↑1

+ �v
↓
1 e−2(d1+d2)a + (�v↑2 + �v↓2 )e

−2d2a

]
e2d1(z−z1)� d� (8a)

j
↑AP
2 = E

↑
2

∫
1

d2
� d� − 1

2

∫ [
E
↑
2

d2
e−2d2a − E

↓
2

d1
e−2d2a(1− e−2d1a)

− E
↓
1

d2
e−2(d1+d2)a �v

↓
1 e−2(d1+d2)a − (�v↑2 + �v↓2 )e

−2d2a

]
e2d2(z−z1)� d�

+
1

2

∫ [
E
↑
1

d1
− E

↑
2

d2
+ �v↑1

]
e−2d2(z−z1)� d� (8b)

j↑P = E
↑
P

∫
1

d1
� d� −

∫ [
E
↑
P

d1
− E

↓
P

d2
− (�v↑2P + �v↓2P )

]
e2d1(z−z2)� d� (8c)

and the bias voltage is

v = Eσ
1 b + Eσ

2 a + �vσ1 + �vσ2 = Eσ
P (a + b) + �vσ2P

where

d1 (2) = Im
√
(k
↑ (↓)
F )2 − �2 + i 2k↑ (↓)F /l↑ (↓).

Here, l↑ (↓) are the spin-dependent mean free paths, Eσ
P and Eσ

1,2 are the effective electrical
fields acting on the carriers with spin σ for the P and AP orientations in the first and second
ferromagnetic layer, �vσ1,2 and �vσ2P are the spin-dependent voltage drops at F/F and F/S
interfaces due to the charge and spin accumulation. The unknown values ofEσ ,Eσ

P ,�vσ1,2 and
�vσ2P have to be found from the condition of non-divergency of the currents: ∂jP (AP )

σ /∂z = 0;
e.g. the sum of the terms in (4) proportional to the exponents e−d1z and e−d2z has to vanish and
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jσAP1 = jσAP2 . The system of equations is then easily solved and the resistances for P and AP
orientations are equal:

RP = RAP = v

j↑ + j↓
= (a + b)(ρ↑ + ρ↓)

4
(9)

whereρ↑ (↓) are the resistivities for↑ (↓) spin channels for the bulk ferromagnet. Expression (9)
coincides with expression (11) from [8] if one neglects the spin-flip scattering. It is worthwhile
to notice that we used the Kubo formalism and the authors of [8] employed the diffusion
equation.

According to (9), on the assumption that the GMR originates from spin-dependent scatt-
ering rates in the magnetic materials, we find that there is no GMR effect in the presence of
superconducting contact. This conclusion coincides with the results obtained in [8].

The absence of GMR in this case can be qualitatively understood as follows. In a
ferromagnetic metal, currents for up- and down-spin electrons are not equal. However, in
a BCS superconductor, the current is driven by spinless Cooper pairs, so up- and down-spin
currents are equivalent. To maintain this equivalence, electrons undergo Andreev reflection
at the ferromagnet/superconductor interface and spin accumulation appears at this interface.
Due to this accumulation, a jump �v of chemical potentials (of different signs for up- and
down-spin electrons) arises. The values of these jumps are

�v↑ = v
ρ↓ − ρ↑
ρ↑ + ρ↓

= −�v↓

for the P configuration and

�v↑ = −�v↓ = v
(a − b)(ρ↓ − ρ↑)
(a + b)(ρ↑ + ρ↓)

for the AP configuration, where v is the voltage drop across the total structure. In particular,
�v↑ = �v↓ = 0 for a = b for the AP configuration. Then, the additional drop of voltage in
the parallel configuration exactly equalizes the resistances for the P and AP configurations, so
the GMR is suppressed.

5. General case

Now let us consider the model where both mechanisms, the electron’s reflection at the exchange
barrier between the layers with antiparallel magnetization and spin-dependent elastic scattering
of electrons within the ferromagnetic layers, influence the electron transport. In this case we
have to substitute the expressions for Green functions given in appendix A in the expression (4)
for the conductance, and substitute this expression into the right-hand side of equation (3),
using the condition ∂jσ /∂z = 0 to find the system of equations and defining all effective fields
and voltage drops at interfaces F/F and F/S in a way similar to the one used for the diffuse
regime. The expressions for currents from which we can get the system of equations for fields
and voltage drops are given in appendix B. To demonstrate the influence of spin-dependent
scattering on the GMR of the system considered, the dependence of the GMR on the thickness
of the ferromagnetic layers is shown in figure 2 for the case of a finite electron mean free path:
l↑ = 120 Å and l↓ = 40 Å. For the case a/l < 1 (figure 2) the curves for finite and infinite
(ballistic regime) mean free paths exhibit similar oscillating behaviours due to the presence
of quantum well states within the intermediate layer in the AP configuration. The scattering
decreases the amplitude of these oscillations but the GMR values are still high enough to be
measured in experiments. For the case a/l > 1 (figure 4) oscillations of the GMR are damped
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Figure 4. The GMR as a function of the thickness of the ferromagnetic layers a = b for the diffuse
regime. The parameters are the same as for figure 1.

and the GMR value gradually decreases, almost vanishing at a/l > 10. This suppression
of the GMR may be explained if one compares ballistic and diffusive regimes. As we have
shown, for the first case the GMR arises due to the additional reflection at the F/F interface
for AP orientation, and for the latter case the GMR is completely suppressed. In the case
under consideration, the electron transport is influenced by both factors: reflection and bulk
scattering. Naturally for layer thickness larger than the mean free paths, the total resistance
of the structure is governed mainly by the bulk scattering rather than by reflection at the F/F
interface. So the electron transport has mostly diffuse character, but it was shown that in this
case superconducting contact suppresses the GMR. A similar influence of scattering on the
GMR value is illustrated in figure 3. Comparing curves, one can see that scattering decreases
the value of the GMR and even changes its sign for large values of r2.

6. Conclusions

In [14] the authors (see [14] and references therein) have measured CPP-GMR for spin-valve
multilayers composed from various ferromagnetic 3d metals and alloys. They found that the
values of the GMR for different metals vary from several per cent up to ∼100%. Usually the
thicknesses of the ferromagnetic layers do not exceed 100 Å, so the electron transport through
them may be considered as quasi-ballistic. The values calculated in our approach are high
enough in the range of F thicknesses 100–500 Å (figure 4). So our results at least do not
contradict this series of experiments. However, in [9, 13] another scenario was suggested for
the GMR in structures with superconducting contacts. As numerical simulation of the GMR in
such structures [9] gives a zero value of the GMR, in [13] the spin-mixing processes due to the
spin–orbit interaction were taken into account and it was shown that the GMR increases with
the parameter ξ of the spin–orbit interaction up to the value ξ ≈ 0.08 eV and decreases after
that point. If we return to the experimental data, it was found that multilayers with Co [11,12]
exhibit a GMR value several times larger than the one with permalloy [25], and estimation of
the spin-diffusion lengths lsd gives lsd(Co) ≈ 590 Å [26]� lsd(Py) ≈ 33–53 Å [25, 27]. So,
the amplitude of the spin–orbit interaction in Co is much smaller than that in Py and, following
the consideration of [13], the GMR for Co multilayers has to be smaller than that for Py ones,
which contradicts the experimental data.
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It is interesting to analyse qualitatively the experimental data on the GMR dependence of
Py/Cu/Py sandwiches on the thickness of Py presented in [25]. It was observed that the GMR
value decreases from 11% for the thickness of Py equal to 150 Å to 8% for thickness equal to
300 Å. This decrease was explained in [25] by the influence of the spin-mixing processes, due
to the spin–orbit scattering. The fit of the experimental points by the curve predicted by the
theory [24] gave an unexpectedly small value of the spin-diffusion length lsd = 55 Å. But we
should mention that in the theory [24] the influence of the superconducting contact on the GMR
was not taken into account. The theory presented above qualitatively describes this decrease
of the GMR (see figure 4), without taking into account spin-flip processes. The underlying
mechanisms of this decrease are completely different from that suggested in [24]; namely,
with increase of the Py thickness, the electron transport in the system undergoes a crossover
from the ballistic regime (non-zero GMR) to the diffuse one (zero GMR). We think that a
complete interpretation of the experiments requires taking into account both mechanisms: the
electron’s reflection at F/F interfaces suggested in this paper and the spin mixing suggested
in [13], especially in the case of Py multilayers.

Until now we have neglected the intraband ss scattering, considering the ss scattering rate
1/τss to be much smaller than the s–d one 1/τsd—that is, τ−1

ss /τ
−1
sd ∼ ρs/ρd � 1 where ρs (d)

is the s (d) density of states at the Fermi level.
To show that ss scattering does not qualitatively change the results obtained above, we

have to underline that, as follows from the comparison of the ballistic and diffuse regimes,
electron scattering leads to decrease of the amplitude of the oscillations of the conductivity
and the GMR versus the layer thickness, and the characteristic damping is proportional to

d1 + d2 = 1/l↑ + 1/l↓

(see the expression for ‘den’ in appendix B). As was shown, for example in [28], for the
single exchange-split s-band model, the characteristic damping length for the anomalous Green
function F(z) is equal to

ξss =
√

4lssvF h̄

3εexch
ss

where lss is the electron’s elastic mean free path, due to ss scattering, vF is the Fermi velocity,
εexch

ss is the exchange splitting of the s band. So we can neglect ss scattering if(
1

l
↑
sd

+
1

l
↓
sd

)−1/
ξss ∼

√
(ρs/ρd)

3εexch
ss

4h̄vF (1/l
↑
sd + 1/l↓sd)

� 1.

If we put in this expression the values of the parameters characteristic for 3d ferromagnetic
metals, this ratio is equal to 0.1–0.2.

Appendix A. Green functions

For the AP case:

G↑↑11 =
1

2ik1

(
eik2|z−z1| +

A↑eik2a − rB↑e−ik2a

˜den
e−ik1(z+z′−2z1)

)
(A.1)

G↑↑22 =
1

2ik2 ˜den
(B↑eik2(z−z2) −A↑e−ik2(z−z2))(reik2(z

′−z1) − e−ik2(z
′−z1)) (A.2)

F
↓↑
11 =

(1− r2)(1− R)
2k3 ˜den

eik∗2 (z−z1)e−ik1(z
′−z1) (A.3)
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F
↓↑
22 = −

1− R
2k3 ˜den

(eik∗1 (z−z1) + re−ik∗1 (z−z1))(reik2(z
′−z1) − e−ik1(z

′−z1)) (A.4)

G↑↑21 = −
e−ik1(z

′−z1)

i(k1 + k2) ˜den
(B↑eik2(z−z2) −A↑e−ik2(z−z2)) (A.5)

F
↓↑
21 =

k2

k3

(1− R)e−ik1(z
′−z1)

(k1 + k2) ˜den
(eik∗1 (z−z1) + re−ik∗1 (z−z1)) (A.6)

where

A↑ = eik∗1aR − e−ik∗1ar

B↑ = −eik∗1a − e−ik∗1arR

˜den = rA↑eik2a − B↑e−ik2a.

For the P case:

G↑ = eik1|z−z′|

2ik1
+

e−ik1(z+z′−2z2)

2ik1
R (A.7)

F ↓↑ = −1− R
2k3

eik∗2 (z−z2)e−ik1(z
′−z1). (A.8)

Here z1, z2 are the coordinates of the F1/F2 and F2/S interfaces.

Appendix B. Expressions for current

jσ =
∫
jσ� � d� (B.1)

j
↑
1� =

E
↑
1

d1
− e−2d1(z−z1)

2

(
E
↑
1

d1
−�v↑0

)
e−2d1b

− e2d1(z−z1)

2

{
E
↑
1

d1

(
2− (1− r2)(C↑ − D↑e−4d2a)

den

)

− E
↑
2

d2 den

[C↑(1− e−2d2a)− D↑(e−2d2a − e−4d2a)
]

+
E
↓
1

d2 den
(1− r2)(1− R2)e−2(d1+d2)a

− E
↓
2

d1 den

[
e−2(d1+d2)a(1 + r2)− e−2d2a − r2e−2(2d1+d2)a

]
+ �v

↓
1

(1− r2)2(1− R2)

den
e−2(d1+d2)a) +

�v
↑
1

den
(1− R2)(C↑ − D↑e−4d2a)

+
�v
↑
2 + �v↓2
den

(1− r2)(1− R2)(e−2d2a − r2e−2(2d1+d2)a)

+

(
1− (1− r2)(C↑ − D↑e−4d2a)

den

)(
E
↑
1

d1
−�v↑0

)
e−2d1b

− (1− r2)2(1− R2)

den

(
E
↓
1

d2
−�v↓0

)
e−2d2b

}
(B.2)
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j
↑
2� =

E
↑
2

d2 den
(C↑ − r2D↑e−4d2a)− e2d2(z−z1)

2 den

{
E
↑
1

d1
D↑e−4d2a

− E
↓
1

d2
(1− r2)(1− R2)e−2(d1+d2)a

+
E
↑
2

d2

[C↑e−2d2a + D↑(e−2d2a − (1 + r2)e−4d2a)
]

+
E
↓
2

d1
(1− R2)

[
e−2(d1+d2)a − e−2d2a + r2e−2(d1+d2)a(1− e−2d1a)

]
+ �v

↑
1 (1− r2)D↑e−4d2a −�v↓1 (1− r2)(1− R2)e−2(d1+d2)a

+ (�v
↑
2 + �v↓2 )(1− R2)(e−2d2a − r2e−2(d1+d2)a)

−
(
E
↑
1

d1
−�v↑0

)
(1− r2)D↑e−4d2ae−2d1b

+

(
E
↓
1

d2
−�v↓0

)
(1− r2)(1− R2)e−2d2b

}

+
e−2d2(z−z1)

2 den

{
E
↑
1

d1
(1− r2)C↑ − E

↑
2

d2

[
(1 + r2 − r2e−2d2a)C↑ − r2D↑e−2d2a

]

− E
↓
1

d2
r2(1− r2)(1− R2)e−2(d1+d2)a

+
E
↓
2

d1
r2(1− R2)

(
e−2(d1+d2)a − e−2d2a + r2e−2(d1+d2)a − e−2(2d1+d2)a

)
+ �v

↑
1 (1− r2)C↑ −�v↓1 r2(1− r2)(1− R2)e−2(d1+d2)a

− r2(�v
↑
2 + �v↓2 )(1− R2)(e−2d2a − r2e−2(2d1+d2)a)

−
(
E
↑
1

d1
−�v↑0

)
e−2d1b(1− r2)C↑

+ r2(1− r2)(1− R2)

(
E
↓
1

d2
−�v↓0

)
e−2d2be−2(d1+d2)a

}
(B.3)

j↑P� =
E↑

d1
− e−2d1(z−z2)

2

(
E↑

d1
−�v↑0P

)
e−2d1(a+b)

− e2d1(z−z2)

2

[
E↑

d1
(1 + R2)− E↓

d2
(1− R2)− (�v↑P2 + �v↓P2 )(1− R2)

+ (1− R2)

(
E↓

d2
−�v↓0P

)
e−2d2(a+b) + R2

(
E↑

d1
−�v↑0P

)
e−2d1(a+b)

]
(B.4)

where

C↑ = 1 + r2R2e−4d1a − 2rRe−2d1a cos 2c1a

D↑ = R2 + r2e−4d1a − 2rRe−2d1a cos 2c1a

den = 1 + 2r2R2e−2(d1+d2)a cosh 2(d1 − d2)a + r4e−4(d1+d2)a

− 2rR
[
(e−2d1a − r2e−2(d1+2d2)a) cos 2c1a − (e−2d2a + r2e−2(2d1+d2)a) cos 2c1a

]
− 2r2e−2(d1+d2)a

[
R2 cos 2(c1 + c2)a + cos 2(c1 − c2)a

]
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and �vσ0 , �vσ0P are the spin-dependent voltage drops at the left contact for AP and P
configurations, respectively.
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[5] Žutić I and Valls O T 2000 Phys. Rev. B 61 1555
[6] Golubov A 1999 Preprint cond-mat/9907194
[7] Jedema F, van Wees B, Hoving B, Filip A and Klapwijk T 1999 Phys. Rev. B 60 16 549
[8] Fal’ko V, Lambert C and Volkov A 1999 Sov. Phys.–JETP 69 532
[9] Taddei F, Sanvito S, Jefferson J and Lambert C 1999 Phys. Rev. Lett. 82 4938

[10] Lambert C and Raimondi R 1998 J. Physique 10 901
[11] Pratt W Jr, Lee S-F, Slaughter J, Loloee R, Schroeder P and Bass J 1991 Phys. Rev. Lett. 66 3060
[12] Holody P, Chiang W, Loloee R, Bass J, Pratt W and Schroeder P 1998 Phys. Rev. B 58 12 230
[13] Taddei F, Sanvito S and Lambert C 2000 Phys. Rev. B 63 012404
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